
RR304 

Research Report 304 

DESIGN AND MAXIMUM ERROR ESTIMATION 

®      FOR SMALL ERROR LOW PASS FILTERS 

Ü 
W.O.Hiblerlll 

September 1972 
1,1 m 

Reproduced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Deporlmenl of Commerce 
Spri^glieldVA 22151 

"■ CORPS OP ENGINEERS. U.S. ARMY 

COLD REGIONS RESEARCH AND ENGINEERING LABORATORY 
,;     - HANOVER, NEW HAMPSHIRE 

APMOVED  FOR PUBLIC  RELEASE:  DISTRIBUTION UNLIMITED. r^J! 



The findings in this report are not to be 
construed as an official Dapartment of 
the Army position unless so designated 
by other authorized documents. 



f 
S«cuiitv Ct«««incation 

DOCUMENT CONTROL DATA -RID 
13 

f5'c.u^■!,'C"""'!'"w'=',,,•• g^of •>""c' ai ,,,<""'< •""'"■"«, ■,'" ** *""** sag *■ aagsg aa a "-"'"•■" ORISINATINa ACTIVITV (CoipoMU auHm) 

U.S. Army Cold Regions Research and 
Engineering Laboratory 

Hanover. New Hampshire 03755 
?    RKPORT TITLE 

U, RBPORT •■CURITV CLAMIFICATION 
Unclassified 

a», »moup 

DESIGN AND MAXIMUM ERROR ESTIMATION FOR SMALT. ERROR LOW PASS FILTERS 

«. oeicniPTivc NOTCI riyp« of npoirtMdlnclM'n dcicaj 

s- *UTHON(tifnn>iwn«, ailAa« inlilml, faatnam»;  

W.D.  Hibler III 

RCPOHT OAT« 

September 1972 
•a.   CONTRACT 

^irSVJer0 1615 
*.  PROJCCT NO. 

d. 

tO   DltTKIBUTION STATCMCNT 

7«.   TOTAL NO. OP P«6C( 

15 
it. NO. OP nmra 

9 
M. ORiaiNATOR'S RKPORT NUMBKRII) 

Research Report 30l* 

**' mfrnia*''0** WC"*' ^* 0**f ■'■l>*>» »«' —» »a aaal^iad" 

Approved for public release; distribution unlimited. 
II. SUPPLCFJCIs'TARV NOTCH 

tt. tPCNtbRIN« MILITARY ACTIVITV 

y^dvanced Research Projects Agency 

\M.  «BtTRACT - 

lLUlin*  sJandf d,sPectral windows small error low pass nonrecursive filters 
may be designed with transition bandwidths inversely proportional to the 
number of filter weights. The maximum ripple error outside the transition 
lllLlZ  any ;ow P8** filt" usln8 discrete smoothing by the three most 
standard spectral windows is estimated. Consequently, the straightforward 
design equations may be used to calculate low pass digital filter weights 
with a guaranteed maximum error of less than 0.^ or 0.05% dependine on 
how wide the transition band is made. Filters designed in this way have 
errors comparable to or smaller than those of filters designed by existing 
techniques and have the advantage that the maximum error if known before- 

14, Key Words 
Bandpass filters 
Bandstop filters 
Fast Fourier Transform 
High-speed convolution 
Low pass filters 
Ripple error estimation 
Spectral windows 

DD .^..1473 : >MM.ITB ran «Miv u*m. i Mm M. «mcM is 
Unclassified 

kcurlly BnÜRSSB 



DESIGN AND MAXIMUM ERROR ESTIMATION 
FOR SMALL ERROR LOW PASS FILTERS 

W. D.Hiblerlll 

September 1972 

PREPARED FOR 

ADVANCED RESEARCH PROJECTS AGENCY 
ARPA ORDER 1615 

BY 

CORPS OF ENGINEERS. U.S. ARMY 

COLD REGIONS RESEARCH AND ENGINEERING LABORATORY 
HANOVER, NEW HAMPSHIRE 

.    lb 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

■■ -■■■■' ■•■■: ■■ .■..•.■.m^j.iff 



X 
. 

■' 

i 

PREFACE 

This mporl was prepared by Dr. W.D. Hihler III, Research Physicist. »1 the Snow and 
Ice Branch, Rcscmcli Division, U.S. Army Cold Regions Research and Eupiieering Lab- 

oratory (USA CRREIA 

Th«! work was supported by the Advanced Research Projects Agency under ARPA 

Order 1615 

Tlie report was technically reviewed by Mr. S.J. Mock and Di. W.F. Weeks, 

The autlioi would like to thank Mr. Tom Davis of the Naval Oceanographic Office for 
initial discussions concerniug low pass fillmnf; nsii.g the Martin technique,   Discussions 
with Mi. S.,1. Mock. Di. W.F. Weeks and Mr. S.F. Aekley were also helpful. 

'&SS  ' 



Ill 

CONTENTS 

Introduction ,  

Filter design and error estimation '.'.'.I'.'.'.'.'.'.'.'.,'.'.'. 2 
Working equations  r 
Application example  1 
Conclusion t  ,, 
Literature cited      [. 

Appendix A.   FFT aperiodic convolution technique '. °           11 
Abstract ,., ,  i.. 

ILLUSTRATIONS 

Figure 

1. Maximum error versus number of filter weights for low puss digital filters 
designed using standard spectral windows ,  

2. Amplitude response of selected nonrecursive digital filters consisting 
of 61 symmetric weights    

3. Example of low pass filtering  

'■      ■       ■ •■■■:        ■■.    ' 



DESIGN AND MAXIMUM ERROR ESTIMATION FOR 
SMALL ERROR LOW PASS FILTERS 

by 

W.D. Hibler III 

Introduction 

There exist many situations in which it i£, desirable to filter out certain frequency components 
from geophysical time series with a sharp frequency cutoff.  When usiiiR a finite nonrecmsive digital 
filter for this purpose, some smoothing of the frequency cutoff must be employed to reduce the magni- 
tude of spurious frequency ripples in both the stop band and the pass band.  One type of smoothing 
for this purpose was developed by Martin (1957).  In later work numerical search techniques for 
finding the optimal type of smoothing in terms of minimizing the ripple error for a given transition 
bandwidth were discussed by Gold and Jordan (1969).  However, in both these techniques the design 
procedure depends upon estimating errors numerically for individual filters.  For convenience it 
would be quite useful to have a design procedure allowing the accurate estimation of ripple error for 
any low pass filter designed by using the procedure.  This is especially important for filters con- 
sisting of large numbers of weights because the error calculation is time consuming and cumbersome 
in such cases. 

Such a formulation and an error estimation are carried out here.  The smoothing is carried out 
by using standard spectral windows, developed for purposes of spectral analysis (Blackman and 
Tukey 1958).  Specific examples illustrated later show that such a smoothing procedure yields low 
pass filters with smaller errors (by a factor of five in one case) than those of comparable filters 
designed by the Martin (1957) technique. As a result of the error estimation, the straightforward 
working equations may be used to quickly calculate convolution weights for symmeiiic, unity gain 
low pass filters with a guaranteed ripple amplitude outside the transition band of less than 0.9% 
or 0.05% depending on how wide the transition band is made.  Moreover, in the working equations 
presented later the width of the transition band scales inversely with N (the number of convolution 
weights), so that the frequency cutoff for a given error may be made arbitrarily sharp by increasing 
N. Once the convolution weights are calculated, the convolution may be performed by conventional 
techniques or by the aperiodic fast Fourier transform (FFT) procedure (Stockham 1966), a much more 
rapid technique. (The aperiodic FFT procedure should not be confused with simply doing a FFT, 
removing certain frequencies and then transforming back to real space, because such an operation 
effects a periodic convolution with spurious end point effects).  For completeness we have included 
the basic equations for fie FFT aperiodic convolution procedure in Appendix A. 

In the next section we shall formulate the design procedure in a manner that allows the numerical 
estimate of maximum error.  Maximum errors will then be calculated for the three most standard spec- 
tral windows.  A specific example and working equations will also be presented for those interested 
in using low pass filters without going through the complete detail of the design procedure. 
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Filter design and error estimation 

A convenient way of viewing the frequency response of a given finite filter is to consider the 
frequency spectrum of the filter an "estimate" of the true spectrum of the infinite length filter. 
Viewed in this .iicinner, spurious frequency ripples result from the convolution of the Fourier trans- 
form of the data window with the true spectrum.  A way to improve the situation is to use a non- 
rectangular data window which produces smaller amplitude ripples, but which also smooths out the 
frequency cutoff. 

Let us consider a symmetric digital filter with weights C(n): 

H(n) 
C(n) 

ff(n) 
2 

n      0, + 1 +/V  -  1 

n =  +iV. 

The frequency response of this filter is (Holloway 1958): 

H(f)      2  1    W(n) cos (2tf/nA 0   <   H(0)   t   cos i2ntNM)H(N) 
ii   l 

(1) 

where Ar is the data interval.  We shall denote functions in frequency space by a tilda variable 
with (ranging from 0 to 0.5 cycles/data interval.  If H(f) is known at the discrete frequencies n/(2T) 
where T      A/At), then eq 1 may be inverted 

N- 1 
„, .       1   *-;        ^n Ü,, /ow      H(0) ,   ^ «(W/2T) H(n)       —   >    cos H(k/2T)  4  ——- t   cos (nn) 

N  *~a N 
k   1 

m 2N 
(2) 

Introducing the infinite Dirac comb 

y(f; At) 1     8(1  -  q\t) 
q=—ex: 

(3) 

(where «5(0 is the Dirac delta function), eq 1 may be rewritten in the form 

H{()        /  dt1 cos(2^l)H'(t')<7(t,;A«)   j H^l' - t^U^. 2T)dl1 (4) 

where 

Wit) 
0 |r| - T 

1/2 rj    T 
1 |f| s T 

Hj(t) = 
iHn) n      0. . 

//(n)/2 n       ^ N 
o Irl -• T. 

' (N - 1) 

(The values of // jft) at other values of t are not important because of the multiplication by VCt'; At) 
in oq 4. To verily that eq 4 is in fact equal to eq 1, it is convenient to note that the convolution of 
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fllW with the infinite Dirac comb is equal to   1^ ^(f - 2<,T) so that for \t'\ < NAt this sum 

over q reduces to H^V ).) q 

Since all terms in the integral in eq 4 are even functions of t\ we may replace cos (2^') by 
giSrtft'   Using the identity 

f ei27Tlt'W;M)dt' _-Ly(/;l/At) (5) 

and the convolution theorem, eq 4 becomes 

Hit) =    I I      f(/ - n/2T - q/At)//(n/2T) 
n— —00   q=—00 

(6) 

where 

m-^-W- 
Eouation 6 illustrates how the aliased Fourier transform of the spectral ^^^^^ 
the discrete frequency response to give the complete frequency ^nseje ^ cer a n1^0 

change the form of «W by using some nonrectangular spectral *m°\™***^2^m 
of the interval [-T. Tl. If we substitute such a data window in eq 4. then eq 6 is the same With 
m being replaced by W^f) and H(0 being a different frequency response, call it H £1). 

We would like to use a spectral window W^t), having as small side lobes as possible while 
causing miuimum smoothing of the spectral content.  A general class of windows developed for 
power spectral calculations with these considerations in mind is of the form 

iZL ui < T 
  "U 

aio + 2£aijCOSJT 

(S) 
WAt)  =  \ 0.5[ai0  + 2  2 (-1)'^] |t| = T 

.0 |t| > T. 

The Fourier transform of any window of this type is given by (Blackman and Tukey 1958. p. 99) 

QXf) - aiQQi0if) +   S   aijlQ0(f + i/2T) + Q0(/ - ;/2T)l ^ 
j=1 

where QQif) is as defined in eq 7. In particular, we will consider only «ases where aij = 0 f0r 

r> 2   In this case, since Q0(m/2T) = 0 for an integer m with magnitude > 0. we have 

1    Q^n/ZT - Nq/T) = QjOi^T) (10) 

q=—00 
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for |n | ■. /V - 3.  Consequently, eq 6 [with Wit) replaced by W^l)] takes on the simple form at 
discrete frequency values n/2T: 

//j<n/2f) 

2 

n     - 2 \ / III     - 2 

if //(n/2T)     0 for |n!   ■ W     3.  Equation 11 can thus he used to determine smoothed discrete 
frequency response values H^n/ST) ^iven ideal frequency response values H(n/2T) and some 
spectral window coefficients ain|.   Filter weights may then he calculated from eq 2. 

We will consider here the three most standard spectral windows (Blackmail and Tukey 1958) 
which have the listed nonzero coefficients a,   : 

1. Hamiing  a, 0       0.3. a^   ,       «]   ,1       0'2r'> 

2. Hamming aL)| 0       0.54. a2    ,       a2  ,,       0,23 

3. Blackmail  it.i<0      0.i2t a^^ .,       a.^ 4 j   .  Ü.25, a3 _2  = a3 g =   0.04. 

Usiiifi eq 11 the design procedure is to choose initially H(n/2T) equal to 1 up to in|   -   p, and 
zero for |ni     p.  We will call p tlie design cutoff.  Smoothed frequency weighls «,(« '2T) are 
determined by eq 11 and the smoothed frequency weiphts are converted to digital filter weights by 
eq2.  Clearly the transition band will extend from (p - 1)''2T to (p . 2)/2T for the Hamming and 
Manning spectral windows and from (p - 2) 2T to (p  i 3)/2T for the Blackmail window.  Rrrors are 
any deviation from 1 in the pass band and deviations from 0 in the stop band. 

The basic equation for estimating the maximum error is eq 6.   An equivalent form of this equation 
obtained by rearranging I lie double sum is (frequencies are measured in units of 1/2T): 

H,m i     «V/<)//AUc -  t) n2) 

where//AU) 1   Hit      2qAn is now periodic.  Keeping the periodicity of HA(n in miiid. we see 
(| -N " 

that if we scarcli numerically for the maximum error we need consider only low pass filters witli 
design cutoff values p L N 2.   This follows because a filter with a higher design cutoff creates the 
same sawtooth function (with a shift in the origin) for HA{f) as for 1       HA'(n. where HA'(f) is an 
appropriate set of design weights with design cutoff p less than N.'Z.   But the maximum error for 
1      HA'{() is the same as for HA'{f) because convolving W{k) with 1 yields 1 identically.  (As 
before, by maximum error we mean the greatest deviation from 1 in the pass band or from zero in the 
stop band, whichever is larger.  Tims, changing the origin of a given sawtoolii function does not 
change the maximum error defined in tiiis way.) 

Now for design cutoffs less than or equal to A//2 we may write eq 12 in the form 

s 
inn      i    w (kvi {k - o + E (13) 

k   -N() 

where 
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£ =   | , ^"A** - f) +    1   mw^ _ /) ü4) k=N0+l k=-N0-l A (14) 

J«a 
wit)H{K -«■ »c - p> * »■</ - P+1) t..., w t p)        (15) 

(where p is the design cutoff value) for valnoQ nf n     1  9        u      J    , 

band. Since Mil) typicaUy goes through one oscillation for A/ = 1 [because W{() i« of L f^irt 

oTc Iltirc8 interval
1
used in the numerical calculations ^ ^ooZT^LZt of change in ff(/). Consequently, errors due to slightly missing the maximum side lobe were small. 

1 m T0 ev
J
aluat

1
e

J
the error for fibers with numbers of weights 2N + 1 less than (or eoual to) 4N 

I- r/e
2r

d i uStiS rr6 the frercy re8pon8e at -1- "^ ^-^ 

dashll ir? i the ^ err0r f0r ^ greater than a Biven cutoff val«e is illustrated by a straight 

Wcsking sqoatlons 

values of i) cycles/data interval. To do t^s we take frequency weights of (at integer 
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10 EH   i   i—i—i—r~i—i—i—rn—i—f—i—i—i—i—r—•«- 

8« 

1   I   I   I   I 1-3 
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Manning 

' 0.1 

Hamming 
-^--IC 

Biackman 

0.01 L. M '     1     I 1 1 I I '     I     '     '      '     ■ 
12 16 20        24 28 

 vA— 

1—1 l-v. 
32 36 80 

N 

Figure 1.  Maximum error versus number of tiller weights for low pass digital 
filters designed using standard spectral windows.   The dotted lines denote max- 
imum error calculated according to eq 15 and represent an upper limit that is 
never exceeded.   As can be seen, the upper limit becomes more refined for large 

N.   For a given N, there are 2N  + 1 digital filter weights. 

H{i)  . 

1. i  < AT, 

0.77, / 

0.23, i AT, 

0, i   "•> /V, 

for the Hamming window, and frequency weights: 

1. i   < Afj 

HÜ)  .   J 

0.96. i = A,', 

0.71, / =17, 

0.29, i . /Vj 

0.04, i = N1 

0, i •> N, 

4 ) 

f 2 

+ 3 

^ 4 

H 4 
v. 

(16) 

(17) 

for the Blackmail window.  The transition band frequencies extend (units of cycles/data interval) 
fromiVj/2/V to^'j  + 3)/2W for the Hamming filter and from Af/SN to (iVj  / 5)/2W for the Blackman 
filter.  The filter weights C(n) are obtained from eq 18 

C'(n) N L  C0S XN) H(i) 
//(o)    m) 
m 2N 

cos nn (18) 
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.800 
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Figure 2.  Amplitude response of selected nonrecursive digital filters consisting of 61 symmetric 
weights.   The error and transition bandwidth (hf) in cycles/data interval for the various filters are: 
1.  (Hamming) 0.42%, A/ = 0.050; 2.  (Martin) 0.627c, A/ = 0.054; 3.  (Blackman) 0.03%, A/ = 
0.083; auu 4.  (Martin) 0.17%, äf = 0.10.   For the Martin filters b and d, the rc parameter is 0.234 

and the H parameters are respectively 0.27, 0.051. 

where 

and 

C(n)  - C'^forn = 0, il, +2 i(N  - 1) 

C(n) = C'(n)/2 for n  =  iJV. 

Note that for numerical computation the sum over i in eq 18 need only extend up to the last nonzero 
value of H(i).  The resulting weights C(n) can then be used to filter some time series ?j(i) by the 
convolution 

JV 
r/fU)   =     S     CO) rfii   -  j) (19) 

with rjAi) being the filtered result.  The filtering procedure necessitates the loss of 2N points. As 
long as the transition band is contained between zero and the Nyquist frequency (1/2 cycles/data 
interval), the maximum error is less than 0.9% for the Hamming filter and less than 0.05% for the 
Blackman filter (Fig. 1). 

In particular, taking N  = 30 and Nj  = 14, Figure 2 illustrates the frequency response of the 
filters designed using eq 16-18.  We have also illustrated typical filters generated according to the 



procedure described by Martin (1957).  The working equations for the Martin filters are also given 
by Davis (1971). a somewhat more accessible reference.  For the Martin filters there are two 
parameters rc and H. where rc denotes the 100% cutoff frequency and H determines the amount of 
smearing of the frequency cutoff.  (Values of rc and H are given with the figure caption.)  Both the 
Hamming and Blackman windows generate filters with less side lobe error than the Martin filters 
witn comparable transition bands. The Blackman window has decidedly less error than the compara- 
ble Martin filter (smaller by a factor of 5). Moreover, the transition band is considerably smaller in 
the Blackman case, with a width equal to 5/61 cycles/data interval as opposed to about 6/61 cycles/ 
data interval for the Martin filter.  A Martin filter with a smaller transition bandwidth would be 
expected to have an even greater error. 

Application example 

To illustrate the application of a low pass filter to digitized data we have applied a low pass 
filter to laser profilometer data taken from an aircraft flying over the arctic pack ice.  The results 
are illustrated in Figure 3.  The illustrated data consist of 1800 digitized points, at l-yd intervals 
representing a straighMine profile of the upper surface of the ice pack. The original record length* 
was 2720 points as the filtering process necessitated the loss of 460 end points at each end of the 
record.  The low frequency trends in the data are due to the aircraft's change in altitude (about 
20 ft) over the 1800-yard record.  The smooth curve represents the low-pass filtered result. 

The low pass filter was designed using the Hamming window and consisted of 921 weights with 
the transition band extending from 3/460 to 6/460 cycles/yd.  By reference to Figure 1 the error is 
ess than 0.6/o.  The filter weights were convolved with the record using the aperiodic fast Fourier 

transform procedure with a Fourier series length of 2048 points.  In this particular case, the FFT 
aperiodic convolution took about 45 sec (requiring 5 applications of the FFT algorithm for 2048 
points), which was about five times faster than the convolution time using a conventional program 

600 
teoOydt 

800 

Olitanc* 

1000 1200 MOO 1600 m 

Fiffire 3   Example ot low pass liltemg.  The iUustrated data consist ol 1800 points at l-yd inter- 
vals.  Thejmooth curve is the low pass filtered result using a Hamming low pass tilter consisting 

ol 921 weights wtth a transition band extending from 3/920 to 6/920 cycles/yd. 
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We remark that the low pass filter gives a reasonable estimate of the aircraft motion (especially 
in this example), but not in general ideal because there is an overlap between the surface roughness 
spectrum and the aircraft motion spectrum.  [A more detailed filtering process which bypasses the 
spectral overlap problem is described by Hibler (in prep).] Figure 3 is a good example, 
however, of where small filter errors in the pass band are important because of the much larger 
amplitude of the low frequency components compared with high frequency components.  When, for 
example, the low pass filtered result is subtracted from the initial profile, large errors in the pass 
band leave residual low frequencies with amplitudes commensurate with the surface roughness. We 
note in passing that it is clear that rather than low pass filter the data and then subtract the 
filtered points the same end result could be obtained by applying the high pass filter consisting of 
weights (:,(«). where Ct{n) ^ Sn 0 - C(n) with C(n) being the above low pass filter weights. 

Conclusion 
In conclusion, the working equations described in eq 16-18 give a rapid method of determining 

low pass fillers with sharp frequency cutoffs and small spurious side lobe errors.  Moreover, since 
the maximum filter error is known, individual filter errors do not have to be checked - a laborious 
procedure for large N.   In practice, the procedure generates filters with small errors, especially for 
the Blackmail window, which are smaller than those of comparable filters generated by existing 
techniques   It is probably true that for a particular cutoff and convolution length a more accurate 
nonrecursive filter could be designed, for example, by using a slightly different spectral window. 
However, in most applications eq 16-18 give adequate filters; and these equations are convenient to 
use because a maximum filter error estimate is known. 
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APPENDIX A.  FFT APERIODIC CONVOLUTION TECHNIQUE 

the coiwolution1 ^ "^ ^^ ^ ** ^ ^ t0 "^ the SPaCe SerieS ^ by performinS 

ritU) 
N 
i     C(/),(i 

j = -N 
;) (Al) 

with ,; 0) beinj; the filtered result.  The filtering procedure necessitates the loss of 2N end points 
For a filter consisting of a large number of weights, a conventional convolution program takes 
prohibitive amounts of time. Consequently, it is necessary to use the aperiodic fast Fourier trans- 
form high-speed convolution technique (Stockham 1966).  The aperiodic FFT convolution procedure 
should not be confused with simply carrying out a fast Fourie- transform, removing certain fre- 
quencies, and then transforming back to real space as this results in a periodic convolution with 
spurious end point effects.  The aperiodic fast Fourier transform is performed as follows   The 
discrete Fourier transform of r/(i) 1 denoted by ^fr)]: 

^) = V e'nm/N 

j=o 
t rfi) 

(A2) 

l?l^bmPrZe<lridl? US^ tlie FFT alROrithn, f0r *»• a P0Wer 0f 2 (CooieV *"<* Tukey 1965). For a filter with 2N   .   1 weights we take Af,   > AT and define 

CJOJ) 

y  s- i» and define 

C(n   i   JV)n = 0 2N  4   1 

0 n  >  (2iV + 1) (A3) 

T^k^V^TJ0^ tranSf0rm 0f ~C»(n) lden0ted ^ ei(fc)' and W and form H(k) t^k) rfik).  Tlie discrete Fourier transform of H(k) is given by 

1   Nrl    - 
H(n)   - i   v      e 

Ni k=o 

2vink/N 
H(k) (A4) 

and is equal to the aperiodic convolution 

JV-l 

Hin)  =    >* 
m=0 

//,,(" m)C(m) (A5) 

; 
where .,(/) is periodic; i.e.. %(i i qN J *  rß), q an integer.  Because of the zeros in C(/) how- 
ever, tlie aperiodic convolution values ^(i) defined in eq 2 are given by v.(/)      H(n  <   /V) for 

I  ~t\!l
0

U
NK'N ~ !"  Thus'/Vi -2Wfil,e'-ed points are obtained.  Note that if the convolution 

length. 2N ,  1. is nearly equal to /V, then only a few points will be accurately filtered 
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Clearly the above procedure may be used for filtering a long rfecord by operating with the FFT 
algorithm on overlapping sections of record with the overlap depending on the convolution length 
In our application the FFT aperiodic technique (using N l  = 2048) is about five times faster than 
conventional methods. 


